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The performances of the digital phase-locked loops (DPLL's) for the advanced

deep-space transponders (ADT's) are investigated. DPLL's considered in this ar-

ticle are derived from the analog phase-locked loop, which is currently employed

by the NASA standard deep space transponder, using S-domain to Z-domain map-

ping techniques. Three mappings are used to develop digital approximations of the

standard deep space analog phase-locked loop, namely the bilinear transformation

(BT), impulse invariant transformation (liT), and step invariant transformation

(SIT) techniques. The performance in terms of the closed loop phase and mag-
nitude responses, carrier tracking jitter, and response of the loop to the phase

offset (the difference between the incoming phase and reference phase) is evaluated
for each digital approximation. Theoretical results of the carrier tracking jitter
for command-on and command-off cases are then validated by computer simula-

tion. Both theoretical and computer simulation results show that at high sampling

frequency, the DPLL's approximated by all three transformations have the same

tracking jitter. However, at low sampling frequency, the digital approximation us-

ing BT outperforms the others. The minimum sampling frequency for adequate

tracking performance is determined for each digital approximation of the analog

loop. In addition, computer simulation shows that the DPLL developed by BT

provides faster response to the phase offset than liT and SIT.

I. Introduction

In recent years, the topic of the digital phase-locked

loop (DPLL) has been studied in great detail and well
documented in the literature [1-11]. An excellent sur-

vey of the work accomplished during 1960 1980 is pro-

vided in [1]. The analysis, design, and performance of the

DPLL are dealt with in [4-6]. Optimum DPLL and dig-

itat approximation of the analog loop filter are discussed

in [7,8]. Currently, most of the work on the DPLL con-
centrates in these areas, and very little of it focuses on

the optimum digital approximation of the analog phase-

locked loop (APLL) [8,9]. Aguirre et al. deal only with

the design of an optimum loop filter using the impulse

invariant transform (IIT) method, minimization method,
estimation-prediction technique, and classical control the-
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ory approach. The digital loop filters derived by these

methods were compared in [8] in terms of stability, gain

margin, steady state, and transient performance. On the

other hand, [9] focused on the design of the DPLL based

on the APLL. Boman [9] considered four different transfor-
mations, namely bilinear transformation (BT), IIT, step

invariant transformation (SIT), and rotational transfor-

mation (RT). The output phase responses of the approxi-
mated digital loops using these transformations were eval-

uated at low sampling rates in the absence of noise and

compared. It was found in [9] that for a simple second-

order APLL, the phase response of the digital approxi-

mation of the APLL using the IIT method exhibits less

overshoot and ringing than the others.

The present work is an extension of [8,9,14] to include

many other aspects in determining an optimum transfor-

mation technique to develop a good digital approximation

of a given APLL. The digital approximation is developed

by mapping the continuous time S-domain to the discrete

time Z-domain. The mapping is accomplished using BT,

IIT, SIT, and RT. Because the RT technique is identical

to the IIT technique, only three techniques, namely BT,

IIT, and SIT, are considered in this article. For each of

these mapping techniques, the phase and magnitude re-

sponses of the closed-loop transfer function, the response

of the loop to the phase offset, the minimum sampling fre-

quency for adequate tracking performance, and the carrier

tracking jitter will be evaluated.

The article is divided into five remaining sections. Sec-

tion II introduces the current command signal format that

is received by the deep space transponder along with a sim-

plified model of the APLL for tracking the carrier. Equiva-
lent DPLL's are also described in this section. Detailed re-

cursive implementations of the DPLL's using BT, IIT and
SIT are described in Section III. Included in Section III

are the plots of the phase and magnitude responses of the

closed-loop transfer functions for each digital approxima-

tion. Section IV derives the carrier tracking phase jit-

ter for both analog and digital loops with command-on
and command-off. Section V presents the computer sim-

ulation results to verify the theoretical results obtained

in Section IV and to determine the transient response of

the digital loops to the initial phase offset• Furthermore,

computer simulation results for determining the minimum

sampling frequency for each approximation are also pre-
sented in Section V. Section VI presents the key conclu-
sions of the article.

II. System Modeling

The mathematical model for the command signal to the

spacecraft transponder, S(t), is defined as

S(t) = _ sin ((wc + wa)t + O(t) + ¢) (1)

where P denotes the total received power; wc = 2rrfc is

the angular carrier frequency; coa is the Doppler angular

frequency offset; O(t) characterizes the phase modulation,

and ¢ characterizes the phase offset. The phase modula-

tion employed by the deep space transponder is @(t) =

md(t) sin(wsct) + mRR(t), where m is the command

modulation index; d(t) denotes the command nonreturn-

to-zero (NRZ) data; wsc = 2rfsc is the command an-

gular subcarrier frequency; mR is the ranging modulation

index, and R(-t) denotes the ranging signal.

Without loss of generality, we can set wc = 27rFtr, and

wa = 0, and ¢ = 0, and expand Eq. (1) to get

S(t) = 2x/z-fffi[cos (O(t)) sin (2rrFIFt)

+ sin (e(o) cos (2_rFZFt)] (2)

Ignoring the higher-order-harmonic component, it can be

shown that the first term in Eq. (2) represents the carrier
component, and the second is the command signal com-

ponent [16]. Presently, the carrier component is tracked
by an APLL. Illustrated in Fig. 1 is a simplified block dia-

gram of the analog carrier tracking loop which is currently

employed by the NASA standard deep space transponder.

The APLL depicted in Fig. 1 is a type I, second-order loop

with the following characteristics:

AK = loop gain = 2.4 × 107 (3)

1
S(S) =

(1 + rRcS)'
rnc = 1.6 x lO-5see (4)

l+r2S
F(S)- l+rlS' rl=4707sec; r2=0.0442sec (5)

1

V(S)= (l+rv_'_) Tv = 1.0x 10 -6 see (6)

1

K(S) = _ (7)
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Note that B(S) is the typical lowpass filter (LPF); F(S)

is the loop filter; V(S) is the roll-off filter of the voltage-

controlled oscillator (VCO); and If(S) is the VCO integra-

tor. Let G(S) be the transfer function, excluding the ideal

integrator K(S), of the analog loop defined as follows:

c(s) = B(s)r(s)v(s) (s)

Based on the APLL described in Fig. 1, the equiva-

lent digital counterparts are shown in Figs. 2 and 3. Fig-

ure 2 shows the first configuration, the so-called configu-

ration I, for the digital approximation Of the analog loop.

Configuration I is developed using direct transformation of

each functional block in the analog loop--i.e., B(S), F(S),

V(S), and K(S)--into the Z-domain. In Fig. 2, M stands
for the sample rate reduction factor, and NCO stands for

numerically controlled oscillator. On the other hand, con-

figuration II, shown in Fig. 3, is developed by transforming

G(S) and K(S) into the Z-domain. Notice that the digital
approximations of the APLL illustrated in Figs. 2 and 3

have the sum-and-dump circuit to reduce the sample rate

by a factor of M before digital filtering. The sample rate is

reduced to a rate such that the implementation of the dig-

ital filter is feasible using current digital signal processors.

In the following section, the recursive implementations of

the LPF, VCO roll-off filter, loop filter, VCO integrator,

and the transfer function G(S) will be described.

III. Recursive Implementations of B(S), F(S),
V(S), G(S), and K(S)

To obtain the digital approximation of the analog car-

rier PLL described in Figs. 2 and 3, each functional block

in the analog loop--i.e., B(S), F(S), V(S), and K(S)

can be mapped directly into the Z-domain using BT or the

composite function G(S), which uses IIT or SIT. As men-
tioned earlier, this section will deal only with BT/IIT/SIT,

and BT and IIT/SIT correspond to configurations I and
II, respectively. Notice that when using the BT technique,

one does not map the composite function G(S) because

of the mathematical complexity associated with this tech-

nique. Moreover, when using the IIT and SIT techniques,

one does not map each functional block in the analog loop

because one wants to preserve the impulse and step re-

sponses of the loop, respectively, at the sampling points.

A. Bilinear Transformation Method

Given a proper sampling frequency, this method pre-

serves the phase characteristics in the narrow passband

when mapping the analog PLL into the digital domain.
The mapping from analog (S-domain) to discrete domain

(Z-domain) can be achieved by direct substitution of the
following equation into the analog transfer function [12-

14].

S- 2(Z- 1) (9)
Ts(Z + I)

where Ts denotes the sampling period, and Fs = 1/Ts

denotes the sampling frequency. To obtain the digital ap-

proximation of the analog filters using bilinear transfor-
mation, one substitutes Eq. (9) into Eqs. (4), (5), (6), and

(7) to get B(Z), loop filter F(Z), V(Z), and K(Z). The
results are

(1 + Z-l) (10)
B(Z) = (A00Z_ x + Ala)

(AoZ - Bo) (11)
F(Z) - (A1Z - B1)

Ts(Z + I)

K(z)_ fi (12)

where

A00 = 1 - Co; All = 1 + Co (13)

A0 = l+a0

Ax =l+b0

B0 = a0 - 1

B1 = b0 - 1 > 0

(14)

and

Co 2TRC 2v2 27"i- " ao=--" bo=-- (15)
Ts ' Ts ' Ts

Note that the Z-domain representation for V(S) is exactly

the same as in Eq. (10) except that Co,Aoo, and An are

replaced by, respectively,
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C01 = 2rv.
Ts ' A01 = 1 - C01; A10 = 1 + C01 (16)

The digital closed-loop transfer function, H(Z), for this

case is given by

AK [B(Z)F(Z)V(Z)K(Z)]

H(Z) = 1 + AK[B(Z)F(Z)V(Z)K(Z)]
(17)

Plots of the analog and digital closed-loop phase and

magnitude responses are shown in Figs. 4(a) and 4(b).

These figures show that for sampling frequencies below

80 kHz, distortions in phase and magnitude can occur for

the digital approximation loop. In addition, the figures

show that for sampling frequencies greater than or equal

to 80 kttz, the response of the digital loop approaches that

of the analog counterpart. Hence, to achieve the same

response as the analog loop, the minimum sampling fre-

quency for this case is 80 kHz. Later on, the minimum

sampling frequency to achieve acceptable tracking perfor-

mances will be investigated by computer simulation. Fig-

ures 5(a), 5(b), and 5(c) show the recursive implementa-

tions of the loop filter F(Z), the integrator K(Z), and the

LPF B(Z), respectively.

a.(z) =

_o _1 _2 ]Ts 1- Z-le -aTs + ]- Z-le -bTs + 1- Z-le -cTs

where

(2o)

7"1 -- 7"2 (21)
O_0 _ (T 1 -- TRC)(T 1 -- TV)

rRc - r2 (22)
_x = (7-Rc- 7-x)(7-Rc- -¢)

and

rv-r2
(23)

Ot 2 : (7. 2 -- 7-1)(7"V -- TRC )

1 1 1
a=--', b=--', c=-- (24)

rl 7-RC 7-V

B. Impulse Invariant Transformation Method

This mapping technique preserves the impulse response

at the sampling points. Let g(t) be the impulse response
of G(S), i.e., g(t) = L-X{G(S)}, where L-X{.} denotes

the inverse Laplace transform of {.}. Thus, the digital ap-

proximation of the analog transfer function G(S) is given
by [12-14]

GD(Z) = Ts [z{g(01t = nTs)]

where z{.} is the z-transform of {.}. Note that the analog
transfer function G(S) considered in this article is defined

as in Eq. (8). Similarly, one can get the equivalent digital

approximation for the integrator K(S). It is found to be

Zrs
_(z) -

(Z-l)

The digital closed-loop transfer function for this case is

given by

H(Z) = 1 + AK[GD(Z)K(Z)] (25)

From Eq. (25), the plots of the phase and magnitude

responses can be obtained for the digital approximation

(18) loop. Figures 6(a) and 6(5) illustrate the closed-loop phase
and magnitude responses for both analog and digital loops.

The figures show that the response of the digital loop ap-

proximated using impulse invariant transformation is the

same as that of the analog loop when the sampling fre-

quency is higher than or equal to 80 kHz. When the sam-

pling frequency is less than 80 kHz, the digital loop can
encounter serious distortion in both phase and amplitude

responses. The recursive implementations Go(Z) and
(19) If(Z) using impulse invariant transformation are shown

in Figs. 7(a) and 7(b).

The digital approximation for the analog transfer func-

tion G(S), which is given in Eq. (8), is obtained by finding

the inverse Laplace transform of G(S) and then substitut-

ing the resultant into Eq. (18). Evaluating Eq. (18), one
has

C. Step Invariant Transformation Method

This method preserves the step response at the sam-

pling points when mapping S-domain to Z-domain. The
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relationship between the analog and digital transfer func-

tion is [12-14]

where z{.} and G(S) are defined as they are above. The

digital approximation K(Z) for K(S) using step invariant
transformation can be obtained in a similar manner. The

results are

Ts (27)
K(Z) - (Z- 1)

[ i_z-1
GD(Z) = fl0 -{-ill L1 - Z-le -aTs ]

+/3211 1-Z-I ]--Z- 1e-bT-_J

]_ Z-le-_'r_ j

(28)

where

Oq (_2
#0= a0 + +

a -b- e
(29)

GO _i _2
_i = ---; _2 = ---; _3- (30)

a b c

The parameters G0, or1, a2, a, b, and c are defined in

Eqs. (21) through (24). Again, Eq. (25) can be used to
evaluate the closed-loop transfer function for this case.

The plots of the closed-loop transfer functions for both

analog and digital loops are shown in Figs. 8(a) and 8(b).

The figures show that the magnitude response approaches

the analog response when the sampling frequency is higher

than or equal to 100 kHz. However, the phase response suf-
fers serious distortion when the sampling frequency is less

than 1 MHz. Thus, in order to achieve the same response

as the analog loop, the digital approximation loop using

step invariant transformation must be sampled at least at

1 MHz, i.e., this method requires 10 times higher sampling

frequency than the previous methods. Table 1 summarizes

the results in finding the minimum sampling frequency, Fs,

that is required for the digital loop to achieve the same

phase and amplitude responses as the analog loop. The
recursive implementations of GD(Z) and K(Z) using step

invariant transformation are shown in Figs. 9(a) and 9(b).

IV. Carrier Tracking Performances of the

Approximated Digital Loops

The tracking performance of the APLL for high loop

signal-to-noise ratio (LSNR) is well known [15,16]. For

LSNR > 5 dB, the variance of the tracking phase error is

approximated by

NoBL (31)
Pc

where No is the one-sided thermal noise spectral density,

BL denotes one-sided tracking loop noise bandwidth, and

Pc is the carrier power. Note that LSNR = 5 dB is the

loop threshold point where the nonlinear theory and linear

theory depart severely (by about 1 dB or more in terms

of tracking variance). The mathematical expressions for

the analog loop bandwidth and carrier power are given by

[15,16]

1F2BL = _ IH(jw)12dw (32)
O0

where H(jw) is the analog closed-loop transfer function,
which is identical to Eq. (17) with Z replaced by s = jw.

Using the loop gain, the LPF, the loop filter, the roll-
off filter of the VCO, and the VCO integrator given in

Eqs. (3) to (7), respectively, the one-sided tracking loop

noise bandwidth is calculated using Eq. (32). The result

is BL = 62 Hz.

For the digital loops, the one-sided loop noise band-

width BDL is given by

1" dZ
1 H(Z)H(Z- (33)

BDL -- 47rjTsH2(1 ) )--Z
IZl-1

where j = _ and H(Z) is the closed-loop digital trans-
fer function which is given by Eqs. (17) and (25) for BT

and IIT/SIT, respectively. The digital loop noise band-
width for IIT can be calculated by substituting the digital

transfer function GD(Z), shown in Eq. (20), into Eq. (25)

and then substituting the resultant into Eq. (33). For SIT,

Eq. (26) is used instead of Eq. (20) for the digital transfer

function GD( Z).

In this article, Eq. (32) will be evaluated numerically

using an analytical computer program for the three trans-
formation methods under investigation. The numerical re-

suits are plotted in Fig. 10. Figure 10 shows a plot BL/Fs

179



(or BLTs) versus BDL/Fs (or BDLTS) for BT, liT, and

SIT. This figure shows that, for BLTs < 0.01, the track-

ing loop noise bandwidth of the digital approximation of
the analog loop using BT is almost identical to that of

the analog loop. On the other hand, the digital loop noise

bandwidth obtained by using lIT/SIT departs from the

analog loop bandwidth when BLTs > 0.001. Notice that

SIT provides the worst digital approximation, and BT is

the best among the three transformations. Table 2 gives a

brief summary of the numerical results shown in Fig. 10.

Figure 10 shows that, for BLTS < 0.01 (corresponding

to Fs < 6.2 kHz), the digital tracking loop bandwidth ap-

proximated by BT is the same as the analog loop. More-

over, the loop bandwidths of the digital loops approxi-

mated by IIT and SIT are worse than those of the analog

counterpart for BLTs > 0.001 (corresponding to Fs =
62 kHz). This implies that in order to achieve the same

tracking phase error as the analog loop, the digital loop

approximated by BT requires lower sampling frequency

than the liT and SIT loops. For the analog loop with

characteristics specified in Section II, it is found that the

minimum digital-loop sampling frequency that is required

for the digital loop to have the same tracking loop band-

widths as the analog is 6.2 kHz, and this is only achievable
through BT. It has been shown in Table 1 that the min-

imum sampling frequency required to achieve the same

phase and amplitude responses as the analog is 80 kHz for

both BT and IIT, and 1 MHz for SIT. Hence, what will
be the minimum sampling frequency that one would select

for optimum performance? The answer to this question
will be deferred until Section V.

It should be mentioned that Eq. (33) can also be evalu-

ated analytically by expressing H(Z) in the following form:

boZ4 + blZ 3 + b2Z 2 + b3Z1 + b4

H(Z) = aoZ4 + alZ3 + a2Z2 + a3Z 1 + 34 (34)

and then from Table III in [17], Eq. (35) becomes

BDL = [2TsH2(1)] [ao{(a _ aoboQo-aoBaQl +aoB2Q2-aoB3Q3+ B4Q4- 324)Q0 - (aoal - 33a4)Q1 + (aoa2 -- a234)Q2 - (aoa3 - ala4)Q3}] (35)

where

B 0 = bo2 -_- bl2 -+- b 2 + b_ -_ b2; 131 : 2(bob1 -_ bib2 -}- b2b3 '{- b3b4) (36)

t32 = 2(bob2+baba+b2b4); 133 =2(boba+blb4); 134=2bob4 (37)

Qo = aoele4 - aoaae2 + a4(ale2 - eae4); Q1 = aoale4 - a032a3 + a4(ala2 - a3e4) (38)

Q2 = aoale2 -- aoa=el + a4(32e3 -- a3e2); Q3 = al(ale2 --eae4) -- a2(alel -- aaea)+aa(ele4 -- aae=) (39)

Q4 = ao [e2(31a4 -- aoa3) + es(a20 -- 32)] -4-(e 2 - e2)[al(al -- a3) + (ao -- a4)(e4 -- a2)1 (40)

el = ao q-a2; e2 = al q-a3; e3 = 324-34 (41)

e4 = ao+a4; es = ao + a2 + a4 (42)

As an example, for BT, one gets

ao = 2FsAloAll + AKAo; al = 2Fs(AloAooA1 + AolAnA1 - AloAllB1 - AllAloA1) + AK(3Ao - 13o) (43)
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a2 = 2FsAl(AooAol - AolAll) + 2FsB1(AIoAll - AloAoo - A01All) + 3AK(Ao- Bo)

a3 = 2FsBl(AooAlo - AolAoo + AmAll) - 2FsA1Ao1Aoo + AK(Ao - 3Bo); a4 = 2FsB1AloAoo - AKBo

bo = AKAo; bl = AK(3Ao - B0); b2 = 3AK(Ao - 3B0)

b3 = AK(Ao - 3B0); b4 = -AKBo

(44)

(45)

(46)

(47)

Having determined the corresponding digital loop noise
bandwidth, one can evaluate the variance of the tracking

phase error for the digital approximations of the analog

loop using the following formula from Eq. (31):

NBDL (48)
_2_ Pc'

where N is the total one-sided noise spectral density.

Sc_(f, Ts,:sc) =

O(3

E
n----2_n----even

+

j2(m) [6(f - nfsc) + 6(f + nfsc)]

fi j_(m) [soft - k/sc) + s_(f + kfsc)]
k=l,k=odd

(49)

When the command and ranging are turned off, i.e.,

rn =mn = 0, all power is allocated to the carrier and
there is no interference from the command and ranging to

the carrier tracking loop, and hence N = No. When the

command (or ranging) is turned on, there exists some in-
terference between the carrier and the command (or rang-

ing). Since the ranging tones will be placed farther away
from the carrier and the power allocated to the ranging

is always smaller than the power allocated to the com-

mand, the effects of ranging to the carrier tracking loop

are-negligible and will not be considered here. However,
the effects of the command to the carrier tracking may not

be neglected because of the increase in the command data
rate. Recently, the international Consultative Committee

for Space Data Systems (CCSDS) has considered increas-

ing the maximum command data rate from 2 kbits/sec to
4 kbits/sec and the possibility of using a 32-kHz subcarrier

frequency for both 2 kbits/sec and 4 kbits/sec.

To determine the effect of interference of the command

on the carrier tracking loop, a model of the command data

must be provided. Here it is assumed that the command

data symbols are equally likely to be +l's and -l's and
that successive symbols are uncorrelated. This assump-

tion leads to the power spectral density (PDS) of a unit

power sinusoidal wave subcarrier phase-reversal-keyed by
the command data stream. See Eq. (1) for the signal; the

PSD is given by [18]

where

[sin(TrfT)12
sD(S) = Ts l _ J

(50)

where T is the command symbol period. Note that the
PSD shown above is evaluated at the carrier frequency.

Hence, when the command is on, the total noise spectral

density, N, seen by the carrier tracking loop can be ap-

proximated using the following relationship:

N = N° [ I + PC SCD(BDL'T'fsC)]Ivo (51)

where the definition of Pc, taken from Eq. (1) and [16,18],

is

Pc = (P)J_(m) (52)

where J0(.) is the zero-order Bessel function. Figure 11
shows the theoretical results obtained for the variance of

the carrier tracking phase jitter, c_2, as a function of the re-

ceived signal-to-noise spectral density ratio (SNR), which

is P/No, for both analog and digital loops when the com-
mand is on. The results were plotted for the modulation

index rn = 70 deg, command subcarrier frequency fsc =

181



32 kHz, command data rate Rs = 2 kbits/sec, and sam-

pling frequency Fs = 1 MHz. As expected, for high sam-

piing frequency, the tracking jitter of the digital loop us-

ing BT/IIT/SIT approaches that of the analog loop. Fig-

ure 12 presents the numerical results for the digital loop

using BT with both command-on and command-off. The

theoretical results shown in this figure will be verified by

computer simulations discussed in Section V. Note that

the relationship between the total received SNR, P/No,
and the carrier tracking loop signal-to-thermal noise spec-

tral density ratio, Pc/No, can be evaluated from Eq. (52),
and the results are plotted in Fig. 13.

V. Computer Simulation Results

The digital PPL's shown in Figs. 2 and 3 have been im-

plemented using the Signal Processing Workstation (SPW)

of Comdisco, Inc. Simulations have been run to verify the

carrier tracking jitter obtained in Section IV and to de-

termine the time responses of the digital loops due to the
phase offset between the incoming and the NCO reference

phase. The update rate of the loop has been set to be

the same as the sampling rate. This is done in the sim-

ulation by setting the parameter M = 1 (see Figs. 2 and
3). In addition, the simulations have been performed to

determine the mininmm achievable sampling frequency for

each digital approximation.

A. Measurements of the Tracking Jitter and

Time Response of the Digital Loops

Computer simulations for the digital loops approxi-

mated by BT (see Fig. 2) and lIT/SIT (see Fig. 3) have

been run for both command-on (with modulation index

set at 70 deg, command data rate of 2 kbits/sec, and sub-

carrier frequency of 32 kHz) and command-off at 1-MHz
sampling frequency. The simulations were run for 2.5 mil-

lion iterations, and the variance of the carrier phase jit-
ter was measured for four different noise seeds. Table 3

presents the average results of four noise seeds. For the

sake of comparison, the results are also plotted in Fig. 12.

On the other hand, Fig. 14 shows the simulation results of

the digital loops approximated by IIT and SIT at 1 MHz

sampling frequency. The sinmlation results, for all cases

at 1-MHz sampling frequency, are in good agreement with
the theoretical results.

Computer simulation has been performed to determine

the time responses of the digital approximations of the
loops using the three transformation techniques described

in Section III. A phase offset of 7r/9 rad between the in-

coming phase of the signal and the reference NCO has

been injected into the loop with a 1-MHz sampling rate,
and the settling time, ts, of each loop to the phase offset

was measured. Here, the settling time is defined as the

time it takes the loop to catch up with the phase offset,

or the time it takes the loop to stabilize in the presence of

the phase offset. The results are summarized in Table 4
for the command-off and noise-free cases.

B. Minimum Achievable Sampling Frequency

As shown in Fig. 10 and Table 2, for the analog PLL
characteristics specified in Section II, the minimum sam-

pling frequencies required for the digital loop to achieve

the same analog tracking loop bandwidth are 6.2 kHz and

62 kHz for BT and for IIT/SIT, respectively. On the
other hand, it has been shown in Section III that the min-

imum sampling frequencies required for the digital loop to

have the same closed-loop phase and amplitude responses

are 80 kHz and 1 MHz for BT/IIT and SIT, respectively.

Based on these results, one is tempted to select the small-

est sampling frequency so that the requirements on the

speed of the digital signal processor and power consump-

tion can be minimized. However, the selected sampling

frequencies (based on these criteria) may not be able to

provide the required tracking performance. Computer sim-
ulation will be used as an additional tool to assist in decid-

ing the minimum achievable sampling frequency. Here, the

minimum achievable sampling frequency, denoted as Fsm,

is defined as the frequency that satisfies the tracking per-

formance requirement. Table 5 summarizes the simulation

results for a 200-kHz carrier frequency, 32-kHz subcarrier

frequency, data rate of 2 kbits/sec, modulation index of

70 deg, and P/No of 35 dB-Hz.

The phase jitters shown in Table 5 are then compared

with the analog phase jitter of 0.045 rad _ for this particu-

lar case--Eq. (50) with BDL replaced by B L = 62 Hz. It

is observed that the variance of the tracking phase error,

_r_, of the digital loop approximated by BT is as good as

that of the analog loop when the sampling frequency is

about 24.8 kHz. Moreover, the tracking phase errors of
the digital loops approximated by IIT and SIT are close

to those of the analog loop when the sampling frequencies
are 240 kHz and 1000 kHz, respectively. The results for

the minimum achievable sampling frequency (or optimum
sampling frequency) for the three transformations, shown

in Table 5, are then compared to the results obtained in
Sections III and IV. Recall that Section III determines the

minimum sampling frequency, denoted as Fs,nb, that is re-
quired for the digital loops to achieve the same amplitude

and phase responses as the analog loop, and that Section

III calculates the minimum sampling frequency, denoted as

Fsmb, for the digital loops to have the same tracking loop
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bandwidth as the analog loop. Table 6 summarizes the fi-

nal results regarding the optimum sampling frequency that

is required for each digital approximation method. Table

6 shows that the minimum achievable sampling frequency

for both BT and IIT is about four times Fsmb and, for

SIT, the minimum achievable sampling frequency is the
same as Fsmr.

Vl. Conclusion

Digital approximations of the current analog deep space

carrier tracking loop have been investigated in detail. The

performance of each approximation was determined for the

closed-loop phase and magnitude responses, carrier track-

ing jitter, response of the loop to the phase offset, and

minimum achievable sampling frequency. The numerical

results show that BT appears to give the best performance

at a low sampling rate, i.e., about 100 BL, as compared

to the other transformations. The best performance at

a low sampling frequency is evident from the closed-loop

phase and magnitude response curves, the carrier track-

ing loop bandwidth curves, and the computer simulation

results for the tracking phase error. However, at a high

sampling frequency (higher than or equal to 1 MHz, for

the case considered in this article), the performance of

the DPLL approximated by all three transformations ap-

proaches that of the analog loop. It was found that in

order to achieve the same tracking phase error as the ana-

log loop, the minimum sampling frequencies required for

BT/IIT and SIT are 4 Fsmb and Fs,_r, respectively. Here,
Fsmb and Fsm_ denote the minimum sampling frequencies

for the digital loops to have the same tracking loop band-
width and phase/magnitude responses, respectively, as the

analog loop. In addition, using the particular analog loop
considered in this article, the simulation results show that

the response to the incoming phase offset of 7r/9 rad of
the digital loop approximated by BT is faster than that of

the loops approximated by IIT and SIT by about 20 and

30 msec, respectively.

As pointed out in [9], in the absence of noise, the digital

loop approximated by the IIT method exhibits less over-

shoot and ringing in the output response than the others.

However, this may not be the key criterion in the selec-

tion of the optimum transformation method for approxi-
mating the analog loop. This article has shown that, for

applications that require low sampling frequency, the BT

method appears to give the best performance in terms of
the tracking phase error and response to the initial phase

offset. Therefore, when the key requirements, such as low

sampling rate, low tracking phase error, and fast response

to the initial phase offset, for approximating the analog
loop are desired, then the BT method is recommended.

Furthermore, the performance evaluation approach pre-

sented in this article can easily be extended to (1) find the
minimum achievable sampling frequency required to ap-

proximate any analog loop, and (2) determine the track-
ing phase error of the digital approximation of the analog

loop.
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Table 1. Minimum sampling frequency, FS, required for the dig-

ital approximation to achieve the same phase and amplitude re-

sponses as the analog loop.

Transformation method Minimum Fs required, kHz

Bilinear 80

Impulse invariant 80

Step invariant 1000

Table 2. Loop noise bandwidth of the digital approximations for FS = 6.2 kHz

and 62 kHz.

Transformation method

Analog loop Digital loop noise Digital loop noise

noise bandwidth, bandwidth, BDL , at bandwidth, BDL , at

BL, Hz Fs = 6.2 kHz, Hz Fs = 62 kHz, Hz

Bilinear 62 62 62

Impulse invariant 62 76.88 62

Step invariant 62 114.08 62

Table 3. Simulation results for command-on (with m ---- 70 deg, fsc = 32 kHz, and

RS = 2 kbits/sec), and command-off at 1-MHz sampling frequency.

Variance of the carrier phase jitter, rad _

Command-off Command-onP/N0,

dB-Hz

BT IIT SIT BT IIT SIT

30 0.064000 0.062250 0.063800 0.151000 0.150750 0.150250

35 0.019670 0.019175 0.019400 0.045100 0.044725 0.045250

40 0.006165 0.006013 0.006040 0.014000 0.013875 0.013875

45 0.001945 0.001895 0.001900 0.004398 0.004360 0.004355

50 0.000613 0.000598 0.000598 0.001390 0.001377 0.001378

55 0.000194 0.000189 0.000189 0.000441 0.000435 0.000445

60 6.145 × 10 -5 5.973 × 10 -s 5.960 x 10 -5 0.000139 0.000140 0.000140

65 6.955 X 10 -5 1.818 x 10 -5 1.890 X 10 -s 4.66 x 10 -5 4.623 X 10 -s 4.623 X 10 -5
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Table4.Settlingtime,ts, for the phase offset of _-/9 rad.

Transformation method Settling time, is, sec

Bilineax 0.12

Impulse invariant 0.14

Step invariaxtt 0.15

Table 5. Tracking phase jitter as s function of sampling frequency.

Fs, kHz

c_, rad 2

BT liT SIT

16.5 0.0725 Out of lock Out of lock

18.5 0.0489 Out of lock Out of lock

24.8 0.0476 Out of lock Out of lock

240 0.0453 0.0458 Out of lock

1000 0.0451 0.0447 0.0453

Table 6. Minimum achievable sampling frequency for each transformation method.

Transformation

method

Minimum samphng

frequency required to

achieve the same phase/

amplitude responses,

Fsmr, kHz

Minimum sampling

frequency required to

achieve the same

analog loop bandwidth,

Fsmb, kHz

Minimum achievable

sampling frequency for

a specified tracking

jitter, FSm, kHz

P_emq3krks

BT

IIT

SIT

80

80

1000

6.20

62.0

62.0

24.8

240

1000

Fsm = 4 FSm b

Fsrn = 3.9 Fsmb

Fsm= Fsmr
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A great deal of effort is now being devoted to the study, analysis, prediction,
and minimization of software maintenance expected cost, long before software is

delivered to users or customers. It has been estimated that, on the average, the

effort spent on software maintenance is as costly as the effort spent on all other

software costs. Software design methods should be the starting point to aid in al-

leviating the problems of software maintenance complexity and high costs. Two

aspects of maintenance deserve attention: (1) protocols for locating and rectifying

defects, and for ensuring that no new defects are introduced in the development

phase of the software process, and (2) protocols for modification, enhancement, and

upgrading. This article focuses primarily on the second aspect, the development of

protocols to help increase the quality and reduce the costs associated with modi-
fications, enhancements, and upgrades of existing software. This study developed

parsimonious models and a relative complexity metric for complexity measurement

of software that were used to rank the modules in the system relative to one an-

other. Some success was achieved in using the models and the relative metric to

identify maintenance-prone modules.

I. Introduction

A. Project Objectives

The primary objective of this study was to determine
whether software metrics could help guide our efforts in

the development and maintenance of the real-time embed-

ded systems that we develop for NASA's Deep Space Net-

work (DSN). Generally, the systems that are developed

control receivers, transmitters, exciters, and signal paths

through the communication hardware. The most common

programming language in our systems is PL/M for Intel

8080, 8086, and 80286 microprocessors; and the systems

range in size from 20,000 to 100,000 non-commented lines

of code (NCLOC). Approximately 65 percent of the fund-
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